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Abstract—Edge computing is vital in developing smart cities by
providing on-site computational resources to support the surging
Internet of Things demands. However, the distributed nature of
edge nodes and large scale of tasks distributed in expansive urban
spaces challenge task scheduling and resource allocation. In this
paper, a novel framework is developed to achieve efficient task
scheduling (assignment and offloading) and resource allocation
for large-scale edge computing in both wired and wireless smart-
city applications. To overcome overparameterization in existing
optimization-based heuristic algorithms, the geometrized task
scheduling problem is addressed by transforming the assignment
of clustered tasks into a regional partition problem in a two-
dimensional graph and applying a Tetris-like task offloading
strategy for edge-cloud cooperation. These approaches avoid
combinatorial explosion and NP-hardness, and the regional
partition problem is solved by multiplicative weighted Voronoi
diagrams with polynomial computational complexity. Further-
more, an adaptive resource allocation algorithm is proposed to
overcome the dynamic, uncertain, and highly concurrent task
requests. An online learning algorithm is adopted to adjust the
sliding window length according to the evolving conditions. Com-
parison results show that the proposed framework significantly
reduces the average task deadline violation rate, i.e., up to 4.72%
of (more than 20 times better than) those using the other schemes,
especially when handling large-scale workloads.

Index Terms—Smart cities; Edge computing; Task scheduling;
Task assignment; Resource allocation

I. INTRODUCTION

With the proliferation of Internet of Things (IoT) devices,
a tremendous amount of data is supposed to be transmitted to
data centers for analysis and processing. According to Statista
[1], the number of global IoT devices is projected to reach 3.21
billion by 2030. Given the limited processing capabilities of
IoT devices, it’s necessary to offload tasks from these devices
to satisfy the latency requirements for emerging applications
in smart cities, such as intelligent transportation management,
digital twin technology, intelligent manufacturing, etc. The
tasks could be data preprocessing, artificial intelligence model
training, target and failure recognition, or digital-twin model
construction. They not only require massive computation re-
sources to handle complicated data processing but also require
low-latency communications. A typical solution is to offload
these tasks to cloud platforms to compensate for the limited
local computational capacity at terminal devices and arousing
the issue of long access time. Nevertheless, the explosive
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growth of data volume generated by IoT applications imposes
a heavy burden on cloud services and networks, leading to
an inevitable decline in overall system performance [2], [3].
Cloud computing infrastructure can not be deployed widely,
due to the high construction costs and relatively low flexibility.
Hence, local terminal devices are generally located far from
the cloud computing platforms, the resulting transmission
delays make it difficult to support delay-sensitive tasks [4],
[5].

Edge computing [6] is proposed as a complement and exten-
sion to cloud computing aiming to mitigate such limitations.
By situating a certain number of edge nodes (ENs) at the net-
work edge, edge computing provides the necessary computing,
storage, and network resources for the resource-limited devices
[7]. The ENs are typically base stations, but may also include
other small servers equipped with computational resources. As
these ENs are close to local terminal devices [8], the latency in
network communications between servers and devices can be
effectively reduced. Furthermore, it can effectively alleviate
the communication and computation burden on cloud data
centers, providing higher quality and efficiency services than
traditional cloud computing [9]. Boasting the advantages of
low latency and high bandwidth, edge computing effectively
provides support for latency-sensitive compute-intensive tasks
[10], [11].

However, the shifting from centralized to distributed com-
puting in smart city scenarios introduces a host of challenges.
Smart cities cover extensive geographic areas [12], meaning
that ENs are often dispersed over a large geographical span,
creating a complex and vast network. The multitude of IoT
devices generates a massive volume of data and consequent
computational tasks, necessitating the selection of the most
suitable ENs or cloud platforms for task scheduling, namely
large-scale task scheduling problems.

With the increase in both the number of tasks and the scale
of nodes, task scheduling involves large-scale task assignment
and offloading decisions [13]. Recent studies on edge-cloud
collaboration have made significant progress in communica-
tion aspects like hybrid NOMA-FDMA transmission schemes
[14] and energy efficiency optimization. However, these ap-
proaches mainly focus on communication-level optimization
while the fundamental challenge of large-scale task scheduling
remains unsolved. The high complexity of task scheduling
makes traditional optimization methods impractical for large-
scale scenarios involving hundreds of ENs and thousands of
concurrent tasks. This calls for a new perspective to address
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the scheduling problem.

The problem becomes even more complicated due to
the need to minimize communication overhead and ensure
quality of service (QoS). Existing heuristic algorithms lead
to overparameterization when dealing with such large-scale
task scheduling problem [15], while reinforcement learning
approaches struggle with the high-dimensional and complex
state and involved action spaces [16]-[19]. Although recent
advancements in large-scale convex optimization techniques
[13], [20] provide robust tools for computational resource
allocation, they are not adequately equipped to directly ad-
dress the challenges associated with non-convex computation
offloading. Therefore, there is an urgent need for an algorithm
with low overhead and complexity to effectively overcome the
challenges of large-scale task scheduling.

Edge computing architecture is inherently distributed and
heterogeneous, and it implies the necessity to manage a large
number of ENs with significant differences in memory size,
I/0 throughput, and CPU capacities [21], [22]. Efficiently
allocating and coordinating the substantial distributed com-
puting resources at the edge sides is challenging. State-of-the-
art cloud computing resource allocation strategies commonly
adopt parallel processing models of virtual machines (VMs),
where cloud platforms can instantiate numerous VMs to pro-
cess many tasks in parallel due to their abundant computational
resources. In contrast, ENs possess limited resources and thus
can only support a restricted number of VMs. Therefore, it
is commonly assumed that tasks follow a specific distribution
(such as Poisson distribution) to manage the queuing process
and to estimate the queuing time for tasks [23], [24]. However,
task requests often do not conform to a specific distribution,
and show a great degree of variability in their arrival process,
making accurate predictions and planning challenging.

Docker [25] container technology offers millisecond-level
boot times and a lightweight deployment paradigm, making
it more apt for edge computing scenarios. However, the
efficient resource allocation for containers faces challenges
in two aspects, i.e., the container configuration approaches
that augment the efficiency of resource utilization [26], [27]
and the resource allocation schemes that adapt to random
and highly concurrent task requests. Most existing studies
overlook the stochastic nature and high concurrency of task
requests, focusing primarily on reducing task latency without
considering the assurance of task completion before deadlines.

To address the challenges mentioned above, the present
research proposes a framework customized to applications of
edge computing with expansive geographic areas and massive
networks, such as smart cities, aimed at optimizing large-scale
task scheduling while ensuring tasks are completed before
their deadlines. The proposed framework innovatively trans-
forms the task assignment problem into a two-dimensional
(2D) geometric regional partitioning problem (RPP) using
multiplicative weighted Voronoi diagrams, while simultane-
ously integrating density-based and prototype-based stream
clustering to reduce the scale of dynamic task streams. The ge-
ometrized task scheduling is accomplished through a combina-
tion of tasks and a Tetris-like offloading evaluation mechanism
to address the resource limitation of ENs. Furthermore, the

dynamic resource allocation is formulated as a sliding window
task segmentation problem with adaptive window length. The
framework offers an effective and reliable solution for the
scheduling of large-scale tasks in smart cities.

The main contributions of this paper are summarized as
follows:

e A novel approach is proposed that transforms large-
scale task scheduling into a geometric regional parti-
tion problem. The approach avoids the combinatorial
explosion inherent in traditional approaches and reduces
computational complexity from exponential to polyno-
mial time. The innovative application of multiplicative
weighted Voronoi diagrams provides a unique solution
for geometric partitioning, enabling efficient geometrized
task assignment.

o Compatible with the proposed geometrized task assign-
ment strategy, an integrated clustering and Tetris-like task
offloading evaluation method is introduced to address
large-scale dynamic task processing and resource limi-
tations of the ENs. The geometry-based offloading algo-
rithm facilitates dynamic resource allocation and enables
effective adaptation to massive, random, and concurrent
task requests by leveraging cloud-edge collaboration ad-
vantages, while considering the cases where tasks have
been partially processed.

« An adaptive resource allocation algorithm is proposed by
transforming the complex edge problem into a task parti-
tioning problem. The sliding time window length is adap-
tive to accommodate dynamic task requests and resource
demands. The method remarkably reduces the compu-
tational overhead and fully leveraging the lightweight
characteristics of containerization technology.

The rest of this paper is structured as follows. Section
IT provides detailed information on the system model and
formulations. Section III briefly summarizes the frame design.
Sections IV and V describe the proposed geometrized task
scheduling and adaptive resource allocation algirithms in de-
tails, respectively. Section VI evaluates the performance of the
proposed framework. Finally, Section VII concludes the paper.

II. SYSTEM MODELING AND PROBLEM FORMULATION
A. System description

Figure 1 presents a smart city system architecture composed
of three layers: 1) cloud layer; 2) edge layer; and 3) device
layer. The device layer consists of a series of IoT devices N =
{1,2,---, N} with limited computational capacity, where N
is the total number of IoT devices. The edge layer contains
a cluster of ENs 7 = {1,2,---,J} with limited computing
power situated in the vicinity of the IoT devices, where J
is the total number of ENs. The cloud layer encompasses a
cloud platform c, distanced from the IoT devices and ENs,
providing computing, storage, and network resources to ENs
that are resource-constrained. Tasks are processed either at an
EN or in a cloud platform. Container images are employed
to create virtualized environments. The cloud platform retains
all necessary container images for computational tasks, while
ENs contain only a selection of commonly used images. If an
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Cloud Layer

Fig. 1. An illustration of the smart city architecture.

EN lacks the required container image to process a specific
task, it should download it from the cloud.

The system’s operation extends indefinitely, structured into
equal time slots indexed by ¢ = 0,1,2,.... The length of each
time slot is represented by a small constant 7, during which the
positions of the IoT devices are assumed to be static. If the
heights are neglected and we only consider a 2D problem,
let the vector p,; € R? represent the location of an IoT
device in time slot ¢. Similarly, the location of EN j € J
is indicated by the vector q; € R2. An IoT devices n € N
generate a dynamic task stream Z = {1,2,--- ,I} in a given
period, where [ is the total number of tasks. The creation of
these tasks is often highly concurrent and the total number
could be exceedingly large. The time required for sending
computational task requests and receiving the computed results
at the IoT devices is defined as the task completion time, the
process during this period is referred to as the computational
task completion process. The computational tasks generated
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where v; denotes the volume of data to be uploaded and
processed for the task (in bits), and ¢; indicates the number
of instructions required per bit of data for task ¢ in MIPS. It
can be determined through offline methods or estimated based
on historical operational data [28]. Thus, the total number of
instructions required to complete the task ¢ can be represented
as ;€. L; represents the size of the container image required
to process task 7. ¢; records the time slot when the task is
generated and the request will be sent to the EN. (; records
the deadline for each task computational results received after
this deadline are considered invalid for the IoT devices. [;
represents the location of the IoT device at time slot ¢;, i.e.,
li =1y,

Assuming full-duplex operation of ENs, where task upload-
ing and result downloading proceed concurrently, the transmis-
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sion technology differs for wired and wireless connections.
For wired connections, the uplink and downlink transmissions
utilize Ethernet technology, which allows for high-speed,
reliable, and full-duplex communication. For wireless con-
nections, the uplink transmission employs advanced multiple-
access technologies to optimize channel use and boost upload
speeds. Given that the data size of the computational results
returned is significantly smaller than that of the uploaded
tasks, the downlink in wireless connections typically uses
orthogonal frequency division multiple access technology or
similar schemes to send the computational results back to IoT
devices [29]. Figure 1 illustrates the entire computational task
completion process, comprising six stages, i.e,

1) Task Assignment. Tasks are assigned to ENs correspond-
ing to the subregions delineated for the device layer and
the locations of task generation. IoT devices send task
metadata to an EN.

2) Offloading Evaluation. The EN initially assesses the
tasks to determine its own ability to accept the tasks based
on available computational resources.

3) Check of Image. If the EN can accept the tasks, it checks
for the requisite container image to process the tasks; if
absent, the image is downloaded from the cloud platform.

4) Task Offloading. If the EN is unable to process the tasks,
the tasks are offloaded to the cloud platform.

5) Resource Allocation. The EN or cloud platform utilizes
the image to create a containerized virtual environment
for the tasks and processes them.

6) Result Delivery. The computed results are returned from
the EN or cloud platform to the IoT devices.

B. System modeling

1) Edge execution: Connections between IoT devices and
ENs could take various forms, including wireless and wired
connections. A binary variable a,, ; is introduced to differ-
entiate between connection types, representing the connection
type between IoT device n and EN j. When device n connects
to node j via a wired connection, a, ; = 1. When device n
connects to node j via a wireless connection, a,, ; = 0.

For wireless connections, practical factors such as path loss
and randomness are considered. The path loss is modeled as
d;f;-, where v denotes the path loss exponent [30], and d,, ;
represents the distance between IoT device n and EN j during
the task request transmission, expressed as

dj = [lln.e; = Ljll2- 2

For wired connections, the transmission rate is assumed to be
a constant ws)‘?wd), with its value depending on the network
settings and hardware specifications.

Considering both wireless and wired connections, the chan-
nel transmission rate w,, ; between IoT device n and EN j is

represented as

1+

)

3)
where B denotes the bandwidth of the wireless connection,
P, represents the transmission power of the IoT device, h is

Py |n)*d,"
2

ired
Wy, j = Q71,,jw7(’bw?re ) + (1 — an,j)B 10g2 .
0

)

the channel fading coefficient of the uplink, and o2 represents
the power of Gaussian white noise.

Given that computational results are typically small data
packets, such as control signals [4], the result delivery time
could be negligible [31]. Hence, only the upload time of the
data ~; is considered. Consequently, the transmission time of
task ¢ at the EN j could be calculated by

Thos (i, j) = —1. )

n,j
When processing a specific task, if the EN j does not
contain the corresponding container image for the task <, it
should be downloaded from the cloud platform. The image
download time is given by

L . . .
—, if image not stored in EN j
We, j

Timg(is§) = S

0, otherwise
where w, ; represents the download throughput of the down-
link between the EN j and the cloud platform.

For container-based virtualization, the computation time for
task ¢ is determined by the number of instructions required
to complete the task and the computational resources that the
EN can allocate to the task from the arrival time slot ¢; when
the task is sent to the deadline time slot (;. The computation
time is given by

Yi€i
Gi

> riy(t)

t=t;

Tcomp (Za j) = 5 (6)

where r; ;(t) denotes the computational resources allocated by
the EN j to the task ¢ at time slot ¢.

Moreover, the computational task completion process also
includes the waiting time for tasks at ENs, denoted as
Twait(i,7). When tasks are in a non-active state, a waiting
time is required. For instance, when virtual containers are
prepared but not yet initiated, or when they are pending
the availability of processing resources. Early studies often
assume that the task requests follow a specific distribution,
such as the Poisson distribution, allowing this component of
time to be simplified into the task’s queuing time. However,
task requests are typically random and highly concurrent in
practice, leading to a situation where the waiting time may
constitute a significant portion of the total task completion
time. Oversimplification as a specific distribution may result in
very large errors. Therefore, for random and highly concurrent
task requests, it is necessary to consider the waiting time
Twait(i,7) with greater precision.

To summarize, the total execution time for the task 7 within
the EN j consists of the data transfer time, image download
time, computation time, and the waiting time, i.e.,

T(Zvj) = Tpos (Zaj) + szg(lvj) + Tcomp(ivj) + Twait(ivj)'

(7N

2) Cloud execution: Similarly, ignoring the time taken

for the return of computed results, the transmission time is

considered solely as the upload time from the EN j to the
cloud platform for the pending data in the task, i.e.,

Thoulj 0) = ==, ®)

Ji¢
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where w; . represents the uplink transmission rate between
the EN and the cloud platform. The cloud platform stores all
necessary container images for task processing, thus it can
directly invoke the relevant images to create a containerized
virtual environment, which takes negligible time and can be
discounted.

Assuming that the computational resource of the cloud
platform is sufficient, the processing time for a task ¢ on the
cloud is given by
%

fe’
where f. represents the cloud platform’s data processing
capability, i.e., the number of instructions per second.

It is important to note that even if a task needs to be
offloaded for processing to the cloud platform, the data to
be processed should first be uploaded to the EN and then
transferred to the cloud platform according to the architecture
used in the present paper. Hence, the total time taken for
offloading a task to the cloud platform can be expressed as

T(i, C) = Tpos (i, ]) + Tpos (,77 C) + Tcomp(ia C) (10)

3) Total processing time: Based on the summarized pro-
cessing times from edge and cloud models, the total processing
time for a task can be represented as

T(Z) = IL,JT(Za j) + xi,cT(i7 C)a

Tcomp (27 C) =

€))

(1)

where the binary variables x; ; and z; . indicate whether the
task is executed at the EN j or on the cloud platform c,
respectively. The variable is assigned a value of 1 if the task is
executed at the specified location, and O otherwise. Hereafter,
a task is assumed to be executed at only one location, either
an EN or a cloud platform, it follows

Z Tij+rie=1, Viel
JjET

12)

C. Problem statement

Due to the widespread geographical span and dispersed
distribution of ENs and IoT devices in smart cities, the chal-
lenges of large-scale task scheduling and resource allocation
are encountered. The primary objective of large-scale task
scheduling and resource allocation is to utilize the minimum
possible resources of the EN cluster to fulfill a greater number
of computational task requests, thereby maximizing the QoS.
Given the strong correlation between QoS metrics and deadline
violations, it becomes necessary to define the average task
deadline violation rate as

1l
O=7> V),

i=1

(13)

where V denotes the deadline violation metric for tasks. For a
given task request, if the completion time of the computational
task T; exceeds its deadline (;, the task is considered to violate
its deadline, and V(7) is computed as

0, T(i) < —t;

L T >G—t (1

V(i) =

The average resource utilization rate of the ENs is in-
troduced to evaluate the efficient resource utilization and
computational capability of the ENs. It is defined as the ratio
of total resources allocated to tasks to the total resources of
the EN cluster, expressed as

M=
M«

ri,5(t)

t=1j=11i=1

M=

U= : (15)
(tu)
: TRJ’

J

I
-

where R§t’“) represents the total computing resources of EN j,
T is the total number of time slots. The computing resources
occupied at EN j are subject to strict constraints. To ensure
a timely and efficient reaction, at any time slot ¢, the sum of
resources utilized by all tasks running on an EN should not
exceed the total available resources to the EN, i.e.,

I
in,jri,j(t) < R§-t“), vt,je J. (16)
i=1

Furthermore, the concept of average task offloading rate is
introduced to leverage the abundant computing resources of
the cloud platform and alleviate the computational pressure
on the ENs. The average task offloading rate represents
the proportion of tasks offloaded to the cloud platform for
execution,i.e.,

I
Z Ti,c
0= - ;:1 (17)
Z Z xi,] + xz,c
i=1 \j=1

An optimization problem is formulated to satisfy multiple
objectives, aiming to strike a balance between ensuring service
quality, efficient resource utilization, and reasonable offload-
ing. These objectives require carefully designed constraints
to achieve optimal system performance. The primary goal
is to minimize the average task deadline violation rate ©
to maintain the overall QoS. Additionally, to prevent edge
resource underutilization while maintaining system stability,
the aim is to fully utilize the computational capability of the
EN cluster by keeping the average resource utilization rate
U above a certain threshold I/ . The average offloading rate
constraint |@7@*‘ < e plays a crucial role in system optimiza-
tion, excessive offloading would cause network congestion
and high communication costs, while insufficient offloading
would overwhelm edge nodes with compute-intensive tasks,
both leading to increased deadline violations. Moreover, the
resource capacity constraint on each EN ensures operational
stability by preventing processing overload at individual nodes.

Therefore, the main objective is to minimize the average
task deadline violation rate while satisfying the constraints on
the average resource utilization rate and average offloading
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rate, as well as the resource capacity constraint. It could be
formulated as

min ©
xeX
st. U> 78

0-0"|<e (18)

I
> @i grig(t) < R;-t“)7 vt,je J,
i=1

where X = {x; j,x;. | i € Z,j € J} denotes the scheduling
strategy for all tasks within the task stream Z, with the
minimization of the average task deadline violation rate being
the objective. U " is the expected minimum average resource
utilization rate, O is the expected average offloading rate, and
€ is the allowed deviation range for the offloading rate.

Eq.(18) is an integer optimization problem that aims to find
an optimal scheduling strategy from a set of possible combina-
tions A'. The computational complexity of this problem scales
exponentially with the number of tasks I and the number of
ENs J, i.e., O((J + 1)7), leading to a significant decrease in
computational speed.

The highlights lie in employing algorithms with low com-
putational complexity to address large-scale task scheduling
problems and utilizing dynamic resource allocation strategies
to efficiently handle unpredictable and concurrent task re-
quests. A practical framework and several effective algorithms
are introduced to tackle large-scale task scheduling and re-
source allocation issues in smart city contexts.

III. FRAMEWORK OVERVIEW

The framework design for optimizing task scheduling and
dynamic resource allocation across extensive edge computing
applications, organized through four integrated parts is shown
in Figure 2. The first part is (a) integrated incremental stream-
ing clustering, which addresses large-scale task scheduling by
clustering tasks.

The second part, (b) a weighted Voronoi diagram for task
assignment, and the third part, (c) Tetris-like task offloading
evaluation, collectively complete the task scheduling by as-
signing tasks to an appropriate EN and assessing the feasibility
of task offloading based on resource constraints, deadlines, and
partial task processing. The fourth part dynamically manages
tasks by merging the concepts of (d) deadline-aware task
segmentation and (e) adaptive sliding window optimization
for dynamic adaptive resource allocation, accommodating the
unpredictability of tasks arrival while ensuring the completion
of tasks.

IV. GEOMETRIZED TASK SCHEDULING
A. Geometrization of the problem

IoT devices typically generate a number of compute-
intensive tasks that require efficient allocation to heteroge-
neous ENs for execution in smart city scenarios. Specifically,
given a task stream Z and an EN cluster 7, heterogeneity
among ENs means the execution time 7T'(i,j) for each task
i € T on different ENs j € J varies. Moreover, tasks may

also be allocated to the cloud platform c for execution. The
objective is to identify an allocation scheme 7 : Z — J Uc
that minimizes the average task deadline violation rate O, i.e.,

R
min © = - Z V(i). (19)
=1

The surge is due to the necessity to explore all possible
scheduling strategies X', whose combination count exponen-
tially grows as the number of tasks and nodes increases.
Furthermore, the heterogeneity of ENs exacerbates the severity
of the combinatorial explosion.

To handle the NP-hard problem, an innovative approach
that transforms the original issue into an RPP is proposed.
The method involves dividing the entire area into J non-
overlapping subregions, each corresponding to an EN j € J.
Additionally, tasks can also be assigned to cloud platform
c after evaluation. A task ¢+ € 7 is allocated to the EN j
that minimizes the comprehensive cost function f (i, j), rather
than directly determining the target EN for each task as in
the original problem. The comprehensive cost function f (4, j)
considers three factors, i.e., task execution time 7'(), task
transmission distance cost d(i,j), and an abstract auxiliary
function g(,7) representing optimization strategies such as
task clustering and node resource availability, expressed as

[0, 5) = wi T (@) + wad(i, ) + wsg(i, j),  (20)

where w,ws, w3 are the weighting coefficients for each
component, respectively. The objective function of the RPP
is to minimize the sum of the comprehensive costs for all
tasks as ,

J+1
mlnizzlrjnzullf(uj). 21

The advantage of the geometrization approach lies in avoid-
ing the combinatorial explosion inherent in the original opti-
mization problem, thereby reducing the problem’s complexity
to a polynomial level. For instance, in a scenario involving
100 tasks and 10 ENs, the optimal task assignment problem
requires evaluating 10'°C potential allocation schemes. In
contrast, the RPP merely necessitates determining the geo-
graphic area scopes corresponding to the 10 ENs, significantly
lowering the computational complexity. RPP can obtain a
reliable approximate solution within polynomial time, with
the worst-case performance upper bound being « times the
optimal solution of the original problem, where « is a constant
factor related to the optimization strategy.

The effectiveness of the RPP depends on determining
reasonable regional partitioning schemes by tuning w; and
wy, as well as appropriately designing the auxiliary function
g(i,7) related to optimization strategies and tuning its weight
ws, further reducing the constant factor o and enhancing the
approximation quality.

B. Integrated incremental streaming clustering

To design the optimization strategy’s auxiliary function
g(i,7) and its weight ws, the key lies in leveraging the specific
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(a) Integrated incremental
streaming clustering

(b) Weighted voronoi diagram
for task assignment

(¢) Tetris-like task
offloading evaluation
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Fig. 2. Overview of the proposed framework.

characteristics of tasks to implement effective clustering strate-
gies. Particularly for large-scale tasks, concentrating multiple
smaller tasks into one larger task significantly reduces the
overall number of variables. For a task streaming clustering
problem, an incremental streaming clustering algorithm is
adopted to decrease the number of variables by combining
the density-based and prototype-based perspectives.

For a large-scale dynamic task stream Z, the feature vector
of a task ¢ € Z denoted by ((;,vie;,1;) is defined through three
core attributes, its deadline (;, computational demand ~;e;,
and generation location [;. It necessitates defining a similarity
measure between tasks. For any two tasks ¢ and ', their
comprehensive distance D(i,4) is defined as the weighted Eu-
clidean distance based on their three core attributes, expressed
as

D(i,i') = v/ we(Ci—Ci)> + wn(vici—virein)® + willli=Ls |13
(22)
where w¢, wy, and w; are the weight coefficients for the
three attributes deadline, computation workload, and location,
respectively, and they satisfy w¢e +w,, +w; = 1.
1) Density-based stream clustering: The density-based
stream clustering algorithm facilitates rapid identification of

and response to core dense areas within task streams by
dynamically processing data streams through the maintenance
and updating of CF-Tree and CF-Kernel data structures, form-
ing micro-clusters promptly. Each micro-cluster P, maintains
its centroid ¢, entry radius 7,.(Pk), number of members
nm (Px), and density ¢(Py).

For a newly arrived task ¢, the algorithm first identifies the
set of existing micro-clusters [P, that are density-reachable
from task ¢ that could be expressed as

P, = {Pk max D(i,p) < rd} ,

PEPk
where 74 is a predefined radius threshold. It then constructs a
candidate micro-cluster P; by including the union of points in
all micro-clusters in IP; and the new task 7 itself as P; = P, Us1.
The density ¢(P;) of this candidate micro-cluster is computed
as

(23)

|Pi]
Pi) = o
where |P;| is the number of points in P;, and V(P;) is the
multi-dimensional volume of the space occupied by P;.

The candidate micro-cluster P; is accepted as a new micro-
cluster if ¢(P;) > ¢s, where ¢ is a predefined density

(24)
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threshold. In the case, the algorithm further checks if P; can
be merged with any existing micro-clusters Py, that satisfy

D(ci,cr) < rr(Pi) + 17 (Pr) + s (25)

where c;, c;, are the centroids, r,, is a merge radius threshold,
and r,.(Py) is the entry radius of Py, defined as

7.-(Px) = max D(cg, p). (26)
PEPk

The merged micro-cluster then replaces the separate micro-

clusters P and Py in the set of micro-clusters maintained by

the algorithm. Otherwise, if the density satisfies ¢(P;) < @5,

a new micro-cluster containing only i is created.

The algorithm dynamically maintains a set of micro-
clusters, adding newly accepted dense micro-clusters, and
merging existing ones based on the centroid distance con-
dition, while removing older micro-clusters that no longer
remain dense as new tasks arrive. It enables rapid detection of
evolving dense regions within the stream.

2) Prototype-based stream clustering: The prototype-based
stream clustering algorithm refines and optimizes the morphol-
ogy of micro-clusters from a global perspective to reflect the
evolution of dynamic task streams more accurately. It uses a
hierarchical time window model with window sizes specified
as 2" time slots to track statistical changes across multiple time
scales, where h = 0,1,.... For each micro-cluster P;, and
time scale of 2" time slots, the algorithm updates n(P)2")
and c,(fh') to reflect the changes in stream statistics. At each
time scale of 2" time slots, the outlier factor Of(Py) for Py

is computed as
Of(Pe)= > Dlek.p)
p€N7l(Pk)

27

The outlier factor O¢(Py) indicates the distance between
Py, and its neighborhood N, (Py). The prototype-based stream
clustering algorithm identifies micro-clusters with lower O at
each 2", as they are closer to potential high-density centers.
It then updates its statistics via

M (P)®) = g (PR) @) + (1= )m®), (28a)
h h—1 1— )\)m(Qh)
(2 = 2 L AmT] o (28b)

where 0 < A < 1 denotes the inertia weight, m") represents
the number of tasks newly joined within the time scale 2",
and n,, (P;)2") and cfh) are the member count and centroid
at the end of the update, respectively. It ensures that the
statistical information of micro-cluster Py accurately reflects
its evolution at this time scale.

Algorithm 1 presents the task clustering algorithm that
integrates the density-based stream clustering and prototype-
based stream clustering algorithms. Lines 1-8 process each
task ¢ in the task stream Z, assigning it to the nearest micro-
cluster or creating a new micro-cluster based on the density
threshold p. Lines 9-16 update the micro-cluster statistics over
multiple time scales 2". The overall time complexity of the
algorithm is O(I - M + H - M), where M is the number of
micro-clusters and H is the number of time scales considered.

Algorithm 1 Simplified Integrated Density and Prototype
Stream Clustering

Input: Task stream Z, radius 74, density threshold ¢,
merge radius r,,, time scales 2" inertia weight A
Output: Task blocks ip,,...,%8,,
Initialize: Empty set of micro-clusters P = ()
1: for each task ¢ € 7 do
2: Find density-reachable micro-clusters:
P, = {Pr € P|maxpep, D(i,p) < 71q}

3 Construct candidate micro-cluster P; = P, U ¢

4 if (P;) > ¢ then

5: add P; to P and merge as Py if satisfy eq.(26)
6: else Create a micro-cluster Py = {i} and add it to IP
7 end if

8: end for

9: for each time scale 2" do

10: for each micro-cluster P;, do

11: Compute outlier factor using eq. (27)

12: end for

13: for micro-clusters with low O; do

14: Update nm(Pk)(Qh) and c,(fh) using eq. (28)
15: end for

16: end for

17: Obtain task blocks ip, from final micro-clusters Py,

18: return Task blocks ip,,...,i5,,

Integrated incremental clustering algorithms can efficiently
process large-scale dynamic task streams. The density-based
stream clustering algorithm swiftly identifies dense regions
within data streams and forms micro-clusters, which then serve
as input for the prototype-based stream clustering algorithm.
The latter further refines the structure of micro-clusters to more
accurately reflect the overall distribution of task streams. The
approach clusters the dynamic task stream Z based on critical
attributes such as deadline, computational requirements, and
task generation location. This results in several distinct task
blocks denoted as ip,,iB,,.-.,%B,,. Each task block is char-
acterized by its number of members n,,(P;) and centroid ¢;.
These task blocks ensure that the original dynamic task stream
T is completely reconstructed by the union of all task blocks,
ie.,

M
=iz, (29)
k=1

The practical implementation of Algorithm 1 in wireless
networks involves a three-phase process. In the initialization
phase, each EN maintains a local CF-Tree structure to track
task patterns. During the streaming phase, when IoT devices
generate new tasks, they send metadata (;,ve;,1;) to their
nearest EN. The EN then updates its CF-Tree structure and
performs local clustering, requiring only O(M) memory space
where M is the number of micro-clusters. Finally, in the refine-
ment phase, ENs periodically exchange cluster statistics with
neighboring nodes to optimize cluster boundaries, incurring
O(J) communication overhead where J is the number of ENs
in communication range.
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C. Geometrized task assignment using weighted Voronoi dia-
gram

An effective regional partitioning strategy should consider
the geographical distribution and dynamic resource availability
of ENs, and optimally determine w; and ws, to optimize
load distribution and resource efficiency, thereby minimizing
task completion times. Therefore, the multiplicative weighted
Voronoi diagram (MWYVD) is employed in regional parti-
tioning. The MWVD is an extension of the classic Voronoi
diagram that considers the position and weight of sites when
dividing space into distinct regions. The regional partitioning
within the MWVD is based on a finite set of site positions
S, where each site s € S is associated with a corresponding
weight us. The methodology employs the weighted Euclidean
distance to demarcate the area of influence for each site,
resulting in what is known as Voronoi cells V,. Here, the
weighted Euclidean distance is calculated as d(o, s) /s, where
d(o, s) represents the ordinary Euclidean distance from a point
o to the site s. For any point o € V;, the weighted Euclidean
distance to the site s is less than that to any other site
s' € 8§\ {s}, the relationship is defined as

Vsz{o

In applying the MWVD to large-scale task processing in
edge computing, the EN j is designated as a site, while
task block 7p, is mapped to a point based on its generation
location [;,, . The weight of a site is considered to be the
remaining computational resources (RCR) R;(t) of the EN j
in the time slot ¢. Since the weight is positive, the resulting
weighted Euclidean distance ensures that each EN’s distance
to its neighboring boundaries is finite. Each EN thus possesses
an enclosed Voronoi cell that contains only itself, ensuring the
device layer is geographically partitioned into J subregions,
equal to the number of ENs. This subregion is denoted as
V](a). The boundary of each V;a) € V@ is composed of
the weighted partitioning lines B/ (t) between adjacent ENs,

given by
U B,
J'ETNI

id(07s) < ! d(o,s'),Vs' € S\ {s}} . (30)

Hs 2y

(@) _
V= (31)

where J is the set of all ENs, and V(®) denotes the set of
all such subregions. The RCR R;(t) are occupied by task
execution and then released upon task completion, causing the
range of the Voronoi cell V;a) for EN j fluctuate. When the
generation location [;, of task block ip, is located within

the Voronoi cell V](-a) aésigned to EN 7, the task is assigned
to that EN. Consequently, the set of tasks allocated to EN j

could be expressed as
1 g, = Lirllo"
I(_a) — ; K -/ .
J {ZBJC < R;/(t) yJ #] )
(32)

where x € [0,1] is a tuning parameter used to balance the
influence of weights and distances on task assignment.

In the example depicted in Figure 3, the MWVD partitions
the device layer into 10 subregions. Each subregion serviced
by an EN is responsible for tasks generated by the IoT

iB, lj ||%7H

R (t)

J

devices within that area. ENs with relatively higher RCR
R;(t) are allocated larger Voronoi cells VJ(-a) in the MWVD.
The approach enables these ENs to handle a greater number
of tasks, thereby achieving effective load balancing among
heterogeneous ENs.

== Remain computational

R(t) =% N ) ask ok
U B8 pesources for Edge node j Task block
l; 9 Location of Edge node 7 3 Edge node
Form the Voronoi cell V}“) 3 Vorenoi cell for Edge node
Edge node j ] 3 3 3
Assign the task block ~. <

Task assignment set 1’}")

Fig. 3. An illustration of the multiplicative weighted Voronoi diagram for
task assignment.

Algorithm 2 Regional partitioning and task assignment based
on multiplicative weighted Voronoi diagram
Input: Set of ENs 7, RCR R;(t) for each EN j at time
slot ¢ and task stream Z
Output: MWVD V(@ and Z.* for each EN j
Initialize:Initialize an empty set V(@) to store the Voronoi
cells, initialize an empty set Ij(a) for each EN j to store
the assigned tasks
: for each j € J do
Create a Voronoi cell V](a) for EN j

1
2
3 Initialize V!*) as the entire plane
4
5

for each j' € J\ j do
Compute the weighted bisector Bj;:(¢):

6 Bjjy(t) « {per? | lebla” _ [l P
HO) RE (1)
7: > The weighted bisector B;;(t) divides the plane
8: Update VJ(»G) by intersecting it with the region
9: end for
10: Add V{” to V@
11: end for

—_

2: for each task block ip, € Z do
13: for each EN j € J do

14: if task block location I;, € Vj(a) then

15: Add task block ip, to the set I](-a)

16: > Assign task block ip, to EN j
17: Break the inner loop

18: end if

19: end for

20: end for

return task assignment sets I](-a) for each EN j

Algorithm 2 details the process of task assignment to ENs
for each time slot ¢. Lines 1-11 are dedicated to generating the
MWYVD based on the computational resources of ENs. Lines
12-20 focus on assigning tasks to ENs based on the generated
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MWVD. The implementation of Algorithm 2 leverages the
distributed nature of edge computing. Each EN maintains its
Voronoi cell by exchanging only boundary information with
neighboring nodes. The information exchange occurs in three
key situations:(1) when EN resources change significantly
(> 20%), (2) when task block patterns shift notably, or (3)
at regular intervals (typically every 100 time slots). This
approach requires each EN to maintain only local topology
information and communicate with immediate neighbors, re-
sulting in O(log J) average communication overhead per
node. The total storage requirement at each node is O(K),
where K is the average number of neighboring ENs.

D. Tetris-like task offloading evaluation

ENs should leverage their resources to accept and process
as many tasks as possible, just as Tetris players try to fit pieces
onto the game board. However, this does not guarantee that
an EN will have the capacity to handle all tasks assigned to
it, especially when receiving multiple tasks simultaneously,
potentially leading to insufficient resource allocation and the
inability to meet all task deadlines. Drawing inspiration from
how Tetris players must quickly assess and place pieces, ENs
should evaluate the tasks they receive to ensure completion
within their deadlines. The complexity of the evaluation arises
from the fact that the actual computation time of a task
depends on the amount of resources allocated to it. The
resource allocation is dynamically adjusted based on the set
of tasks already accepted by the EN, making task completion
time difficult to predict precisely. Therefore, assessing the
satisfaction of task deadlines can be translated into assessing
the availability of resources at the EN, paralleling the way
Tetris players must constantly evaluate the available space on
the game board. By analyzing the resource availability of an
EN during a specific period, one can estimate whether a task
can be completed before its deadline, taking cues from how
Tetris players plan their piece placements to succeed in the
game.

To assess whether EN j can accept and successfully process
task block ip, € Z,", the deadline (;, of task block ip,
should be considered, similar to how Tetris pieces are placed
based on their shape and available space. The task set Z;
already accepted by EN j is subdivided into two subsets
according to the deadline (;,, . The first subset Z, in, consists
of all task blocks with deadlines no later than ¢, , ie.

T, = {i | G < Gy, } and the second subset I;fin
consists of all task blocks with deadlines later than (;, i.e.
IL.Bk = {i| ¢ > Cip, }. as illustrated in Figure 4.

The task blocks in subset I;:in are sorted in order of their
deadlines, i.e, Cin < Qq < Qqﬂ < ... < (,,- The emphasis
initially is placed on the task block ¢, € Ij'.fin with the earliest
deadline (; . The amount of data that is processed for task
block i before time slot j, is represented as

Yij(te) =7 Z rij(t).

t=t;

(33)

It considers the situation where a portion of the task block
has already been processed. Accounting for the number of
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Fig. 4. Tetris-like task offloading evaluation.

instructions required to process task block i, before the current
time slot ¢, the remaining resources in the interval [(;, _,, ;]
are given by

(G, — Cin)Rﬁ-t“) — Vi Eiy T Viyi(tr), q=1
AR, =4 (G, — Cz‘q_l)R;t“) — Vig€iq + Vig.j(tr)
+ maX(O, ARjgiq,l); g>1
(34
If ARj¢, =0, it indicates that task block iq can be com-
pleted within the interval [(;,_,,(;, ], and EN j has additional
resources to process other task blocks, similar to how Tetris
pieces can be placed in available spaces. These resources can
be used to supplement the available resources in the next
interval [(;,, G, ,]. Conversely, if AR;c, < 0, it implies
that the resources in the interval [(;,_,,(;,] are insufficient
to complete task block 4,4, and additional resources need to be
allocated before the deadline (; 5, » similar to how Tetris pieces
may not fit in the available space and require adjustments.
For the subset ij in, the resources required to be allocated
before the deadline ¢;, are determined as

Ef= 3 (AR min(0,5gn(AR;¢,))),

cTt
ZEIjYin

(35)

where sgn(-) is the sign function. For the task subset
Z; in, with deadlines before (; s, » considering that some task
blocks may be allocated resources and partially processed
before current time slot ¢;, the remaining resources required

to complete these task blocks are represented by

ES = Z (vigi — i j(tr)) -

€T,

(36)

The resources needed between the current time slot ¢
and the deadline of task block ip, include the additional

; +
resources F;F required by the task subset ijin before G,
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the resources E_ to complete the task subset ij in, and the
resources Vi, €ip, required by task block ip,. It should be
assessed whether the aggregate resource demand will exceed
the resource constraints for the interval [t, Cin]. Hence, the
acceptance of task block i, by EN j can be determined by

Ef 4+ By 45,515, 2 (Go, — ) RS G37)
If the task block 7p, meets the condition, then the EN j can
accept it, similar to a Tetris piece fitting into the available
space. Otherwise, the task block ip, is offloaded to the cloud
for processing, similar to a Tetris piece being discarded when
it cannot fit.

Algorithm 3 Tetris-like task offloading evaluation.

Input: Task block ip, deadline (; By required resources
Yig, Eis, - set of tasks 7; already accepted by EN j, current

time slot {5, EN j resource capacity R;t“).
Output: Boolean result indicating if task block ¢p, can
be offloaded to EN j
Initialize: Resource surplus E;" < 0, resource deficit
E- <0
Steps:
1: Partition Z; into two subsets based on deadlines:
Lin, < {1 € L1G < G,
Il < €G> Gin, }
for each task block i, € I;T,in sorted ¢;, do
Calculate remaining resources AR ¢, using eq. (34)
Ef « EY + AR, -min(0,sgn(AR;¢, )
end for
for each task block i € Ijtin do
Calculate required resources v;e; — 95 ;(tx)
E- « E; +vyigi — i j(te)
end for
Calculate total resource needs:
E,. E:*r + E; + %Bkein
1 if By < (G, — ) - R then

R A R ol 4

—
=4

12: return true

13: > EN j can accommodate task block 75, on schedule
14: else

15: return false

16: > Task block ¢p, should be offloaded to the cloud
17: end if

The evaluation algorithm is presented in Algorithm 3. Lines
2-5 process the task subset I;jin with deadlines later than
Cip,» The time complexity is O(M™), where M is the
number of task blocks in I; B,.- Lines 6-9 process the task set
7. in, with deadlines no later than ¢;,, . The time complexity
is O(M~), where M~ is the number of task blocks in Liin,
The overall complexity is O(M), linear in the total number
of task blocks in EN.

V. ADAPTIVE RESOURCE ALLOCATION

Following the task offloading assessment, an EN forms an
accepted task set Z;. Although the resources at the EN are
sufficient to support the execution of task blocks within Z;,

devising a specific resource allocation strategy and determin-
ing task waiting times remain challenging. Traditional resource
allocation methods rely on a predetermined distribution of task
requests and utilize queuing theory to estimate waiting times.
However, these methods do not sufficiently account for the
randomness and high concurrency of task requests, nor the
uncertainty of resource requirements for tasks in each time
interval. These factors necessitate the ability to adaptively
adjust resource allocations according to the task set Z;.

An adaptive resource allocation strategy is introduced to
address the issue, the strategy segments task blocks and
allocates resources for processing within the sliding window
[tk,tr + At]. Furthermore, it employs an online learning
algorithm to continuously optimize the length of the sliding
window At, thereby enabling adaptive responses to evolving
conditions. The characteristics of containerization technology
in edge computing support the implementation. Container
technology offers millisecond-level startup times and, thanks
to its resource isolation mechanism, allows for dynamic adjust-
ments of resource quotas without restarting containers. More-
over, even when deployed at scale, containers do not adversely
affect the overall performance of ENs. These features are
highly compatible with our strategy.

A. Deadline-aware task segmentation and dynamic resource
allocation

To allocate the computational resources for the sliding
window [t ¢ + At], task blocks received by EN j within the
task set Z; should first be sorted according to their respective
deadlines. Subsequently, the remaining available resources
for each task block before its deadline are evaluated. The
remaining available resources for the task block 7,,; within
the interval [(;,_,,(;,] can be calculated as

(Gip, =tk — At)R;‘tu) — Vi€, + iy k), b=1

ARjc, = § Gy = GBS =2, + v, (t0)
+ max(AR; ¢, | ,0),
(38)
where b = 1 represents the first task block, and b > 1
represents the subsequent task blocks. If ARJ',Q,, > 0, the
task block 7, could be completed before its deadline (;,, and
EN j has surplus resources for subsequent tasks. These surplus
resources could be carried over to the next interval for task
processing. Conversely, if ARJ'-,Q‘,) < 0, it indicates that there
are insufficient resources to complete the task block ; within
the interval [(;, ,, (;,]- The task block 4, should be segmented
for resource allocation and processing the segmented segment
within the sliding window [t t;, + At]. The required resource
amount for processing the segment of the task block is given
by [AR; .,
Following the above procedure, iterate through the sub-
sequent remaining task blocks in the task set Z;. The total
amount of resources demanded for all segmented task seg-
ments that EN j should process during the sliding window
[tk,tx + At] could be calculated as

Rj(At) = Y (AR;, min(0,5gn(AR; ,))),
i€Z,
47:6>tk

(39)
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(a) Dynamic resource allocation at time slot ¢,

Fig. 5. An illustration of adaptive resource allocation.

where sgn(-) is the sign function. The formula determines
the resource allocation for the sliding window [tx, tr + At].
Moreover, the RCRs R;(t) of the EN j for task assignment
could be represented as R;t“) — R;(At).

B. Adaptive sliding window optimization driven by non-
parametric Gaussian process

Based on the aforementioned resource allocation strategies,
an online learning-based adaptive sliding window length op-
timization method is introduced [32]. It dynamically adjusts
the length of the sliding window to adapt to the continuously
changing task requests and resource demands, achieving joint
optimization of task violation rate and resource utilization, as
illustrated in Figure 5.

Specifically, a non-parametric Gaussian process (NNGP)
model is adopted to establish the mapping relationship be-
tween the sliding window length and the objective func-
tion value. Given a set of historical sample points H =
(Atg,y)iw,, where Aty represents the sliding window length,
and y; represents the corresponding objective function value,
the NNGP model can be expressed as

f(At) ~ GP(M (At), K(At, At')), (40)

where M (At) is the mean function and K (At, At') is the ker-
nel function used to measure the similarity between different
sliding window lengths. In order to capture the complex rela-
tionship between the sliding window length and the objective
function value better, a composite kernel function is designed
as

62
1
(At — At)?
202 ’

) _ ,
K(AL AY) =K )62 exp (_25”1 (n]At - At |/<P))
41

+ Kagj exp <—

(b) Dynamic resource allocation at time slot 541

where ¢Z and 3 control the signal intensities of the periodic
kernel and the Gaussian kernel, respectively, ¢; and /2 control
the smoothness of the two kernel functions, and ¢ is the period
parameter of the periodic kernel function.

At the end of each sliding window, the average resource
utilization rate 2/, and task violation rate ©»; are computed
and serve as the objective function value, expressed as

Yy = F10a; + F2las, (42)

where 1 and f o are weight coefficients used to balance the
importance of the two optimization objectives, task violation
rate and resource utilization. Specifically, the task violation
rate © A, can be expressed as

- 2Ev6)

Oat = A (43)

where I(At) represents the number of tasks whose deadlines
fall within [tg,t; + At], and V;(i) represents the deadline
violation status of task block ¢ and can be converted to the
following form as

Vi(i) = Lvhi j(G) < viga),

where I(-) is an indicator function. The average resource
utilization rate Ua; within the sliding time window is given
by

(44)

J R(At
o 2= ﬁ
Uns = - (45)

Subsequently, (At,y) is treated as a new sample point to
update the NNGP model. When selecting the optimal sliding
window length, the algorithm balances the exploration and
exploitation strategies to balance the trade-off between local
optimality and global optimality. The exploration rate [ is
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dynamically adjusted over time, with a higher rate initially
and a lower rate later, i.e.,

B(t) = Boexp (—i) + Boo (1 —exp (—L)) , (46)

where [ is the initial exploration rate, (3., is the final explo-
ration rate, and v; and vy are two time-scale parameters that
control the short-term and long-term decay rates of the explo-
ration rate, respectively. The algorithm continuously optimizes
the sliding window length to adapt to dynamic task requests
and resource demands through the online learning approach.
It ensures that the algorithm explores new possibilities while
also utilizing experience. In addition, it possesses strong adapt-
ability and robustness, capable of self-adaptively adjusting
optimization strategies in dynamic scenarios to achieve joint
optimization of task violation rate and resource utilization.
Furthermore, benefiting from the efficiency of the NNGP
model, the algorithm maintains low computational overhead
even on large-scale datasets.

Algorithm 4 Deadline-aware task segmentation and dynamic
resource allocation with adaptive sliding window optimization.

Input: Set of tasks Z; received by EN j, current time slot
tx, and historical sample set H
Output: Resource allocation for tasks in the sliding win-
dow [tg,tr + At]
Initialize: Total resource requirement for split tasks
R;(At) < 0, exploration rate § < Sy, and sliding
window length At < Aty
Steps:
Sort tasks in Z; based on their respective deadlines
for each task i, € Z; in the sorted order do
if Cib > t;, then
Compute resources ARJ-_,% using eq. (38)
Calculate demand R ;(At) using eq. (39)
end if
end for
Compute the task violation rate © o; and average resource
utilization Ua;
9: Compute the objective function value y using eq. (42)
10: Update the historical sample set H < H U (At,y)
11: Update the NNGP model using the sample set H
12: Update the exploration rate J using eq. (46)
13: Select a new length At based on the exploration-
exploitation strategy
14: return R ;(At) as the resource allocation for the sliding
window [t, ), + At].

e A R e

The resource allocation algorithm shown in Algorithm 4
first sorts the task set according to deadlines in Line 2, and
then performs task segmentation and resource allocation based
on the remaining resources in lines 2-7. After the resource
allocation, the algorithm computes the optimization objective
and updates the NNGP model using the new sample point
in lines 8-13. The main complexity of the algorithm comes
from the task segmentation and resource allocation part. Its
time complexity is O(I -log I'). Moreover, updating the NNGP

model involves an additional complexity that depends on the
size of the historical sample set and the kernel function used.

VI. SIMULATION AND RESULTS

All methods are implemented in MATLAB R2022a and
tested on a Windows 11 computer configured with an Intel
Core 17-12700, 2.10 GHz, and 32 GB RAM.

A. Dataset and experimental setup

In the study, a real-world EUA dataset [33] from the
Melbourne CBD area in Australia is employed to validate
the algorithm proposed. The dataset is widely used in the
field of mobile edge computing research [7], [31], [34],
[35]. It includes geographical location data for 125 ENs and
500 IoT device clusters, with each cluster containing 5 IoT
devices, as depicted in Figure 6a. To further simulate diverse
device distributions, two groups of devices following Gaussian
distributions are randomly generated to replace the devices in
Figure 6a, forming two new datasets. One group of devices
is positioned near the EN clusters, as illustrated in Figure 6b.
Conversely, the other group of devices is positioned far from
the EN clusters, as depicted in Figure 6c,

In the simulations, three different scenarios are considered,
including random and high-concurrency task requests, differ-
ent numbers of compute-intensive task requests, and different
numbers of ENs. The communication radius of each EN
ranges from 150 to 200 meters. The additional experimental
parameters for these scenarios are summarized in Table L.

B. Introduction of Compared Algorithms

To further validate the proposed approaches, we imple-
mented five schemes for comparison: RS-QRA, GWS-QRA,
GEOS-QRA, GEOS-DRAF, and GEOS-DRAA. The first two
schemes are based on random scheduling and greedy workload
scheduling, respectively. The latter three adopt the proposed
geometrized scheduling strategy with different resource allo-
cation strategies. The algorithms are summarized as follows.

1) Random scheduling + queuing resource allocation (RS-
ORA) [34]. In the scheme, computational tasks are as-
signed to either randomly selected ENs or the cloud for
processing. ENs process the tasks in the order of their
arrival, following the sequence of deadlines within the
current task set.

2) Greedy workload scheduling + queuing resource alloca-
tion (GWS-QRA) [35]. The scheme evaluates the addi-
tional workload of all the ENs and assigns tasks to the
EN with the lowest workload. Tasks are processed in the
order of their deadlines by the ENs.

3) Geometrized scheduling + queuing resource allocation
(GEOS-QRA). The scheme adopts a geometrized schedul-
ing strategy, including using the integrated incremental
streaming clustering algorithm for dynamic task flow
clustering, using the weighted Voronoi diagram for
region-based task assignment, and conducting a Tetris-
like task offloading evaluation. Tasks are processed in
the order of their deadlines by the ENs.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on January 22,2025 at 11:37:48 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3525020

JOURNAL OF KSIzX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14
-37.808 -37.80: -37.80:
. LI B ) . LR B2 ) . o |, 2
-37.81 ¢ C Y -37.81 ¢ I -37.81 — Lo
-37.812 A - :: o XP = - ¢ -37.812 ed ’ :.' : \ = LE -37.81 AN ’ :' S = - L3
SR TR PREREE SO TR | Lo et e I
o -37.814 5 x ndlify/ -37.814 * el -37.814 ' g 2
g o \ v . . :‘ § . X * . . :' . § d § .i . . :‘ N
%-37816 * o :.. B ..'. et tHar ~ '§,37 6] =) .'.. ; .." W R £ 37810 =X .'.. A -SSR Rt )
R ; °.| i . - ClE .
-37.818 oo™ > - -37.81 il 5 A -37.81 ALHCIR -
.. 10T Device S 10T Device Cad 10T Device
e ’. s LI [- Edge Node e ~ . |:o Edge Node . * L' [- Edge Node
-37.822 [ -37.822 [ 37 i
144.95 144.955 144.96 144.965 144.97 144.975 144.95 144.955 144.96 144.965 144.97 144.975 144.95 144.955 144.96 144.965 144.97 144.975
Longitude Longitude Longitude
(a) EUA dataset 1 (b) EUA dataset 2 (c) EUA dataset 3
Fig. 6. Different distributions of Edge notes and IoT devices in the Melbourne CBD, Australia.
TABLE I
SIMULATION PARAMETERS FOR DIFFERENT SCENARIOS.
Parameter Description Scenario 1 Scenario 2 Scenario 3 Unit
J the total number of edge nodes j 125 125 [25, 120] -
R;t“) Data processing capacity of edge node j 2 x 103 2 x 103 2 x 103 MIPS
fe Data processing capacity of the cloud platform 3.5 x 105 3.5 x 10° 3.5 x 10° MIPS
Yi Amount of data to be uploaded for task [5, 20] [5, 20] [5, 20] MB
I3 Number of instructions per bit for task ¢ [100, 1000]  [8000, 10000]  [1000, 3000] MIPS/bit
L Container image size for task ¢ [10, 100] [10, 100] [10, 100] MB
¢ Deadline for task % [5, 10] [25, 30] [5, 10] S
T Length of one time slot 0.1 0.1 0.1 S
P, Transmission power of IoT device 0.6 0.6 0.6 dBm
B Uplink bandwidth between IoT devices and edge node 10 10 10 MHz
Wn, j Uplink rate between [oT device n and edge node j 1 1 1 MB/s
v Path loss exponent 2 2 2 -
|h|? Channel gain of uplink 1 1 1 -
08 Power of Gaussian white noise -100 -100 -100 dBm
Efjwed) Transmission rate for wired connections 30 30 30 MB/s
We, Downlink rate between edge node and cloud 10 10 10 MB/s
Wj,e Uplink rate between edge node and cloud 1 1 1 MB/s
Wn,c Uplink rate between loT device n and cloud 0.1 0.1 0.1 MB/s

4) Geometrized scheduling + dynamic resource allocation
with fixed sliding window length (GEOS-DRAF). The
scheme adopts the same geometrized scheduling strategy
as GEOS-QRA, but employs a different strategy for
resource allocation. The ENs adopt a deadline-aware task
segmentation and dynamic resource allocation strategy
based on a fixed sliding window length.

5) Geometrized scheduling + dynamic resource allocation
with adaptive sliding window length (GEOS-DRAA). The
scheme adopts the same geometrized scheduling strategy
as GEOS-DRAF but employs a different strategy for
resource allocation. The ENs adopt a dynamic resource
allocation strategy based on adaptive optimization of the
sliding window length.

C. Simulation results

QoS represents a critical metric in edge computing, reflected
by the average task deadline violation rate ©. The study

primarily utilizes © as the principal measure to evaluate the

performance of various schemes. The average offloading rate
O indicates the proportion of tasks offloaded from ENs to
the cloud platform. It is considered to assess the effectiveness
of edge computing in alleviating the computational pressure
on the ENs. The average resource utilization rate Z/ of the
EN cluster evaluates the efficient utilization of computing
resources in the edge computing situation. Each category
of solution undergoes 100 repeated experiments, and their
average results are recorded.

1) Random and high-concurrency task requests with simu-
lation time: A combination of various probability distributions
is employed to simulate random and high-concurrency task
requests as encountered in the real world, for the purpose of
assessing the effectiveness of scheduling algorithms. Regular
requests are generated using a Poisson distribution, while
a normal distribution is utilized to simulate expected peak
requests within specific time intervals. Sporadic high-traffic
events are randomly replicated using heavy-tailed distribu-
tions. Additional random factors are introduced to enhance
the realism of the simulation. Given the complexity and
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unpredictability of such requests, traditional queuing theory
is inadequate for estimating queue times in this context.
Hence, the simulation approach provides a comprehensive
examination of an algorithm’s performance in responding to
random and dynamically changing request scenarios.

TABLE I
RESULTS OF DIFFERENT EUA DATASETS IN RANDOM AND HIGHLY
CONCURRENT TASK REQUEST SCENARIOS, THE AVG © REPRESENTS THE
OVERALL AVERAGE OF THE AVERAGE TASK DEADLINE VIOLATION RATE
© ACROSS ALL SIMULATION DURATIONS BEING EVALUATED.

Dataset1 Dataset2 Dataset3

Methods AVG © AVG © AVG ©
RS-QRA 23.90% 30.16% 22.69%
GWS-QRA 12.41% 19.46% 13.90%
GEOS-QRA 7.74% 6.81% 6.50%
GEOS-DRAF 3.37% 3.00% 2.31%
GEOS-DRAA 1.30% 1.55% 1.07%

To test the long-term stability of performance parameters,
the simulation lasts until 50,000 time units. Figures 7, 8, and
9 illustrate the variation in the average resource utilization
rate I/ and the average offloading rate O for five strategies
across different simulation durations. Table II presents the
experimental results of different EUA datasets in random and
highly concurrent task request scenarios. The best and second-
best values in each column are marked in dark gray and light
gray, respectively, as the simulation duration varies. Compared
to other methods, GEOS-DRAF and GEOS-DRAA achieve
the lowest average task deadline violation rate © across
all EUA datasets, with GEOS-DRAA performing optimally
in all datasets. Specifically, GEOS-DRAF outperforms other
baseline methods on EUA dataset 3. Compared to RS-QRA,
the average task deadline violation rate © of GEOS-DRAF
is reduced to 10.19% of that of RS-QRA. Similarly, GEOS-
DRAF’s O is 16.62% of the performance achieved by GWS-
QRA and 35.54% of the performance achieved by GEOS-
QRA.

In addition, GEOS-DRAA exhibits further superior perfor-
mance in reducing the average task deadline violation rate
©. The © achieved by GEOS-DRAA is only 4.72% of that
of RS-QRA, 7.70% of that of GWS-QRA, 16.46% of that
of GEOS-QRA, and 46.32% of the performance achieved
by GEOS-DRAF. The remarkable improvement by GEOS-
DRAA could be attributed to its employment of a variable
sliding time window length. It enables adaptive optimization
for both the average task deadline violation rate and the
average resource utilization rate. As a result of the adap-
tive optimization approach, building upon the foundation of
GEOS-DRAF, GEOS-DRAA further reduces the average task
deadline violation rate while simultaneously enhancing the
average resource utilization rate of ENs, as evidenced by
Figure 9b. Additionally, GEOS-DRAA constrains the average
offloading rate within a more reasonable range, as illustrated in
Figure 9b. Through these measures, GEOS-DRAA effectively
adapts to scenarios involving random and highly concurrent
task requests.

To evaluate the effectiveness of the proposed geometry-
based scheduling method, a comparative analysis of its per-

formance against the GWS-QRA and RS-QRA approaches
is conducted, as illustrated in figures 7, 8, and 9. While
the GEOS-QRA variant exhibits a lower average resource
utilization rate I/ compared to GWS-QRA, as depicted in
Figure 9b, it demonstrates superior performance in terms of
the average task deadline violation rate ©. The enhancement in
the average task deadline violation rate © performance can be
ascribed to GEOS-QRA’s offloading strategy. Computationally
intensive tasks demanding substantial computational resources
are offloaded to the cloud platform for processing. The offload-
ing approach effectively reduces the computational load on
EN, consequently improving the overall performance. In con-
trast, although RS-QRA also offloads some computationally
intensive tasks to the cloud platform, the offloading process is
carried out randomly without proper evaluation. As a result,
RS-QRA falls behind GEOS-QRA in terms of the average task
deadline violation rate © performance metric.

Comparing the performance of GEOS-QRA and GEOS-
DRAF in Figure 9, it can be observed that at the beginning
of the simulation, the difference in the average task deadline
violation rate © between the two methods is insignificant.
However, as the simulation progresses, GEOS-QRA maintains
a constant level of the average task deadline violation rate
©, while GEOS-DRAF further converges to a lower value.
It indicates that GEOS-DRAF is capable of continuously
adapting to the task requests and coordinating the resources of
ENs and the cloud platform to achieve a better performance in
terms of the average task deadline violation rate. As depicted
in figures 9b and 9c, although both methods employ the same
task scheduling approach, GEOS-DRAF exhibits a higher EN
resource utilization rate and a higher task offloading rate
compared to GEOS-QRA. It indicates that during the resource
allocation process for ENs, the queuing method struggles to
adapt to random and highly concurrent task requests, failing to
fully consider the task processing status and promptly adjust
resource allocation. Consequently, the performance in terms of
the average task deadline violation rate © is suboptimal. To
some extent, it reflects the effectiveness of dynamic resource
allocation.

The superior performance of GEOS-DRAF and GEOS-
DRAA in the EUA dataset 3 could be attributed to the presence
of numerous IoT devices located in the central region, albeit
distant from the ENs. The distribution allows for effective
load balancing, as the surrounding ENs provide sufficient
computational and communication resources to handle the
random and highly concurrent requests. In contrast, while the
IoT devices in the EUA dataset 1 are more evenly distributed,
a certain number of devices are situated at the edges of
the region, leading to difficulties in efficiently processing
the requests generated by these devices. Regarding the EUA
dataset 2, the IoT devices are located in close proximity to
the ENs, resulting in low transmission delays. However, this
distribution pattern also leads to a significant number of tasks
being scheduled to a subset of ENs, causing excessive load on
these specific ENs. It is evidenced by the findings presented in
Figure 8b. Furthermore, in combination with figures 7b and
9b, it can be noted that GEOS-DRAF exhibits a noticeable
decrease in the average resource utilization rate I for the EUA
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Fig. 7. Performance comparisons of (a) average task violation rate ©, (b) average resource utilization rate I/, and (c) average offloading rate @ on EUA
dataset 1 across different simulation durations.
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Fig. 9. Performance comparisons of (a) average task violation rate ©, (b) average resource utilization rate I/, and (c) average offloading rate @ on EUA

dataset 3 across different simulation durations.

dataset 2 compared to the other two datasets.

2) Different numbers of compute-intensive task requests:
To assess the capability of different strategies to handle large-
scale compute-intensive tasks, the number of instructions
required to process each bit of data ¢; is increased to the
range of [8000, 10000] MIPS, and the deadline of task ¢ is
correspondingly extended to the range of [25, 30] s. A total of
10000 tasks are set to simulate a compute-intensive scenario.

Figures 10, 11 ,and 12 show the variation in average re-
source utilization rate I, and average offloading rate O across
five strategies as the number of completed tasks changes. Table
IIT presents the experimental results for different EUA datasets
as the number of computationally intensive tasks varies. The
best and second-best values in each column are marked with
dark gray and light gray, respectively.

The results demonstrate that GEOS-DRAF and GEOS-
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DRAA exhibit strong adaptability in scenarios involving large-
scale computationally intensive tasks, with GEOS-DRAA
achieving the optimal average task deadline violation rate ©
across all EUA datasets. Specifically, the average task deadline
violation rate © achieved by GEOS-DRAA is only 12.48%
of that of RS-QRA, 22.83% of the performance achieved by
GWS-QRA, 26.33% of that of GEOS-QRA, and 59.46% of
the performance achieved by GEOS-DRAF in the EUA dataset
1.

TABLE III
RESULTS OF DIFFERENT EUA DATASETS IN COMPUTE-INTENSIVE
SCENARIOS WITH A LARGE NUMBER OF TASKS, THE AVG © REPRESENTS
THE OVERALL AVERAGE OF THE AVERAGE TASK DEADLINE VIOLATION
RATE © ACROSS ALL THE TASKS BEING EVALUATED.

Dataset1 Dataset2 Dataset3

Methods AVG © AVG © AVG 6
RS-QRA 19.39% 19.81% 20.74%
GWS-QRA 10.60% 10.51% 13.97%
GEOS-QRA 9.19% 9.33% 6.91%
GEOS-DRAF 4.07% 4.54% 3.18%
GEOS-DRAA 2.42% 3.01% 2.96%

Figures 10b, 11b, and 12b illustrate that as the number of
completed tasks increases, the average resource utilization rate
U of GEOS-DRAA and GEOS-DRAF remains at a relatively
lower level compared to other methods, while their average
task offloading rate O is significantly higher and continues to
grow, as shown in figures 10c, 11c, and 12¢c. Consequently, the
average task deadline violation rate © of GEOS-DRAA and
GEOS-DRAF further decreases as the number of completed
tasks increases, indicating that the dynamic resource allocation
approach effectively handles computationally intensive tasks
while maintaining the average task offloading rate O within
a reasonable range. The approach leverages the low com-
munication latency of ENs while also utilizing the powerful
computational capabilities of the cloud platform for intensive
tasks.

For this large-scale computationally intensive task scenario,
GEOS-DRAF and GEOS-DRAA achieve the best performance
in the EUA dataset 1, primarily due to the more uniform
distribution of IoT devices. In situations where the average
load on ENs is high, tasks require an efficient scheduling
strategy to ensure timely completion and to fully utilize the
powerful computational capabilities of the cloud platform.
With sufficient bandwidth, tasks can be offloaded to the cloud
platform for processing.

3) Different numbers of ENs: The simulations are designed
to evaluate the impact of the number of ENs on the per-
formance of scheduling strategies. In these simulations, the
number of ENs progressively increases from 25 to 120, with
an increment of 5 ENs in each simulation. Simultaneously, the
number of instructions required to process each bit of data ¢;
is adjusted in the range of [1000, 3000]. All other parameters
remain consistent across simulations, except for the varying
number of ENs. Figures 7a, 8a, and 9a depict the variation
in the average resource utilization rate I/ and the average
offloading rate O for the five strategies as the number of
ENs changes. Table IV presents the results for different EUA

datasets as the number of ENs varies, with the best and second-
best values in each column marked with dark gray and light
gray, respectively. Compared to other methods, GEOS-DRAF
and GEOS-DRAA achieve the lowest average task deadline
violation rate © across all EUA datasets, with GEOS-DRAA
performing optimally in all datasets. Specifically, in the EUA
dataset 3, the average task deadline violation rate © achieved
by GEOS-DRAA is only 3.07% of that of RS-QRA, 7.90%
of the performance achieved by GWS-QRA, 18.24% of that
of GEOS-QRA, and 32.51% of the performance achieved by
GEOS-DRAF.

TABLE IV
RESULTS OF DIFFERENT EUA DATASETS FOR VARIOUS NUMBERS OF
EDGE NODES, AVG © REPRESENTS THE OVERALL AVERAGE OF THE
AVERAGE TASK DEADLINE VIOLATION RATE © ACROSS THE EVALUATED
EDGE NODE COUNTS.

Datasetl Dataset2 Dataset3

Methods AVG 6 AVG 6 AVG 6
RS-QRA 52.74% 52.15% 51.49%
GWS-QRA 16.96% 20.50% 19.99%
GEOS-QRA 10.24% 9.49% 8.66%
GEOS-DRAF 7.97% 6.36% 4.86%
GEOS-DRAA 2.48% 1.92% 1.58%

The comparative analysis results, shown in Figures 13a,
14a, and 15a, reveal that GEOS-QRA, GEOS-DRAF, and
GEOS-DRAA consistently maintain an average task deadline
violation rate © below 10%. These three methods, employing
the geometrized scheduling approach, outperform both GWS-
QRA and RS-QRA. In contrast, the average task deadline
violation rate © of GWS-QRA is relatively high when the
number of ENs is limited, even approaching the performance
of the random scheduling method RS-QRA. This observation
reflects the fact that a limited number of ENs lack sufficient
resources to process and ensure that all tasks meet their
deadline requirements. As the number of ENs increases, the
performance of GWS-QRA improves, approaching that of
GEOS-DRAA only when the number of ENs is sufficient. On
the other hand, regardless of whether the number of ENs is
limited or sufficient, the average task deadline violation rate
© of RS-QRA consistently exceeds 40%, indicating its poor
adaptability to the scenario. Among the three geometrized
scheduling methods, GEOS-DRAA consistently achieves the
lowest average task deadline violation rate ©, outperforming
both GEOS-QRA and GEOS-DRAF.

Figures 13b, 14b, and 15b reveals that the average resource
utilization rate I/ of the various methods fluctuates as the
number of ENs changes. Although the number of ENs varies,
the other parameters remain unchanged, implying that the total
number of tasks remains constant. Therefore, the overall trend
indicates that the average resource utilization rate I{ is higher
when the number of ENs is limited and decreases as the
number of ENs increases. Similarly, when the number of ENs
is limited, the offloading rates of GEOS-QRA, GEOS-DRAF,
and GEOS-DRAA are higher, demanding greater cloud-edge
communication bandwidth. However, as the number of ENs
increases, the average task offloading rate O exhibits a de-
creasing trend, as illustrated in figures 13c, 14c, and 15c.
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Fig. 12. Performance comparisons of (a) average task violation rate ©, (b) average resource utilization rate I/, and (c) average offloading rate @ on EUA

dataset 3 with varying numbers of completed task count.

Consequently, in scenarios with sufficient cloud-edge com-
munication bandwidth, regardless of the number of ENs,
GEOS-QRA, GEOS-DRAF, and GEOS-DRAA consistently
demonstrate better adaptability to such scenarios, effectively
showcasing their advantages in efficient task scheduling and
dynamic resource allocation.

D. Use Case: Traffic Monitoring Analysis

Based on our experiments with the Melbourne CBD dataset,
we demonstrate the framework implementation through a
traffic monitoring system and further analyze its practical
benefits from an end-user QoE perspective.

The system processes traffic monitoring tasks from 500
video sensors distributed across Melbourne CBD, with pro-

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on January 22,2025 at 11:37:48 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3525020

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19
RS-QRA GWS-QRA GEOS-QRA GEOS-DRAF GEOS-DRAA
60% T T T T T T T — — 60% T T T T T T T T T 70% T T T T T T T T T
\3 L
D o0t |2 s0% f o 0%
b= 5 3
z ~ g ol
5 40% 1 Sa0%t {oam
= £ 40% -
£ 30% 1 Ea0%t 1 g
% 5 % 30%
< < )
0%t 1 B 20%t PR
& A L 20%r
2 = | >
Z 0% Z 0%y = el 1
|
% | % L ov
30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120 30 40 50 60 70 80 90 100 110 120
Egde Node Count Egde Node Count Egde Node Count
(@) (b) ()
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Fig. 15. Performance comparisons of (a) average task violation rate ©, (b) average resource utilization rate I/, and (c) average offloading rate @ on EUA

dataset 3 with varying numbers of edge nodes.

cessing distributed across 125 ENs of varying computational
capabilities. Each sensor generates detection requests every
3 seconds, producing video frames of 5-20MB depending
on traffic density and environmental conditions. Processing
requirements vary from 1000 MIPS/bit for basic vehicle de-
tection to 3000 MIPS/bit for complex traffic pattern analy-
sis. Critical tasks, such as congestion detection and incident
monitoring, operate under strict deadlines of 5 seconds, while

routine traffic flow analysis allows up to 10 seconds response
time, these parameters match our experimental setup in Table
L.

The streaming clustering algorithm processes incoming
tasks using a spatial-temporal correlation mechanism. For in-
stance, during peak hours, 50 concurrent detection tasks from
a 500-meter radius are typically consolidated into 5-8 task
blocks based on their geographic proximity and processing
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requirements. The weighted Voronoi diagram then partitions
the CBD area into processing zones, with boundaries dynam-
ically adjusting based on EN capacity utilization. Complex
analysis tasks consuming over 2500 MIPS/bit are selectively
offloaded to cloud resources when EN utilization exceeds their
rated capacity. The sliding window optimization maintains
a 15-second monitoring window, continuously adjusting re-
source allocation based on traffic patterns and computational
demands, particularly during peak traffic periods.

The system has demonstrated robust performance met-
rics under varying load conditions. From a QoE perspec-
tive, GEOS-DRAA demonstrates superior service metrics. As
shown in 8a, it maintains a high service reliability with 98.45%
task completion rate during peak periods. Figure 16 further
illustrates enhanced service responsiveness, achieving average
response times of 3.63 s for critical tasks and 7.72 s for routine
analysis, significantly outperforming the traditional RS-QRA
queuing method which requires 4.43 s and 9.14 s for equivalent
tasks. As illustrated in Figures 7c, 8c, and 9c, the resource
utilization maintains a stable range of 20% 40% during peak
periods, ensuring robust processing performance. These results
validate the framework’s effectiveness in managing large-scale
tasks through geometric transformation and adaptive resource
allocation mechanisms.

VII. CONCLUSION

This study initially examines the challenges in edge comput-
ing for smart city applications, where state-of-the-art method-
ologies fall short in effectively handling large-scale task
scheduling, offloading evaluation, and efficient resource al-
location for lightweight container virtualization under highly
dynamic task requests as the number of ENs and tasks scale

up.

To address these challenges, a comprehensive framework
is proposed in this paper. The framework includes a ge-
ometrized task scheduling (stream clustering techniques, a
task assignment approach based on regional partition, and
a Tetris-like offloading mechanism) and a dynamic resource
allocation strategy. The stream clustering techniques are em-
ployed to reduce the scale of dynamic task streams, while a
regional partitioning approach is utilized to allocate resources
efficiently across different areas. Furthermore, a Tetris-like
offloading mechanism is introduced to facilitate offloading
compute-intensive tasks to the cloud platform by assessing
available resources at ENs, ensuring task finalization before
deadlines. Moreover, the study presents a sliding window-
based dynamic resource allocation strategy with adaptive win-
dow optimization to cope with the unpredictability and high
concurrency of containerized task requests. The incorporation
of task segmentation and advanced processing guarantees the
timely completion of tasks.

The simulation results demonstrate that the proposed
GEOS-DRAA enhances performance by reducing the average
task deadline violation rate © to only 4.72% of that of RS-
QRA, 7.70% of that of GWS-QRA, 16.46% of that of GEOS-
QRA, and 46.32% of the performance achieved by GEOS-
DRAF when managing large-scale task scheduling. It shows
the efficiency in dynamic resource allocation for compute-
intensive tasks as well as in scenarios with random and high-
concurrency task requests.

The framework is more adaptive for large-scale task
scheduling. However, it might not be optimal for scenarios
requiring ultra-low latency. When configuring resources dy-
namically, it is also necessary to consider rational container
placement and the practical feasibility of task segmentation.
Future work will focus on addressing these issues to further
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reduce task execution time and meet low latency constraints.
Additionally, the framework will be applied to other complex
scenarios with a high density of sensors and terrains akin to
smart cities, such as large-scale offshore wind farms and oil
platform [36].
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